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Abstract

Decode-and-forward (D-F) and compress-and-forward (C-F) are two fundamentally different relay strategies
proposed by (Cover and El Gamal, 1979). Individually, either of them has been successfully generalized to multi-
relay channels. In this paper, to allow each relay node the freedom of choosing either of the two strategies, we
propose a unified framework, where both the D-F and C-F strategies can be employed simultaneously in the network.
It turns out that, to incorporate in full the advantages of both the best known D-F and C-F strategies into a unified
framework, the major challenge arises as follows: For the D-F relay nodes to fully utilize the help of the C-F relay
nodes, decoding at the D-F relay nodes should not be conducted until all the blocks have been finished; however,
in the multi-level D-F strategy, the upstream nodes have to decode prior to the downstream nodes in order to help,
which makes simultaneous decoding at all the D-F relay nodes after all the blocks have been finished inapplicable.
To tackle this problem, nested blocks combined with backward decoding are used in our framework, so that the
D-F relay nodes at different levels can perform backward decoding at different frequencies. As such, the upstream
D-F relay nodes can decode before the downstream D-F relay nodes, and the use of backward decoding at each
D-F relay node ensures the full exploitation of the help of both the other D-F relay nodes and the C-F relay nodes.
The achievable rates under our unified relay framework are found to combine both the best known D-F and C-F
achievable rates and include them as special cases. It is also demonstrated through a Gaussian network example
that our achievable rates are generally better than the rates obtained with existing unified schemes and with D-F
or C-F alone.

I. INTRODUCTION

The relay channel, originally proposed in [1], models a communication scenario where there is one or
more relay nodes that can help the information transmission between the source and the destination. The
simplest one-relay channel is depicted in Fig. 1, where nodes 0, 1, and 2 are the source, the relay, and the
destination, respectively. Two fundamentally different relay strategies have been developed in [2] for such
channels, which, depending on whether the relay decodes the information or not, are generally known as
decode-and-forward (D-F) and compress-and-forward (C-F) respectively.
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Fig. 1. The single-relay channel.

A. D-F and C-F for single-relay channels

In the D-F relay strategy, the relay first decodes the message sent by the source and then forwards it to
the destination, and the destination decodes the message taking into account the inputs of both the source



and the relay. With the D-F relay strategy, the following rate is achievable:
R < max min{I(Xo;Y1[X1), [(Xo, X1;Y2)} (D

p(x0,21)

where, the first condition R < I(Xj;Y;|X;) makes node 1 able to decode the message based on the
signal transmitted by node 0, and the second condition R < I(Xj, X1;Y5) makes node 2 able to decode
the message based on the signals transmitted by node 0 and node 1 together. Notably, the maximization
in (1) is over p(xg, 1), rather than p(x¢)p(z;), which suggests that (1) can only be achieved by node
0 and node 1 cooperating with each other when transmitting signals. To accomplish such cooperation,
an essential technique called block Markov coding was employed in the D-F coding scheme developed
in [2]. Besides, the scheme in [2] also used irregular encoding with codebooks of different sizes at the
source and at the relay, random partitioning (binning), and successive decoding. Subsequently, some other
D-F coding schemes also achieving (1) were found in [3]-[4].

In contrast, the C-F relay strategy is used when the relay cannot decode the message sent by the source,
but still can help by compressing its observation Y; into Y;, and forwarding this compressed version to
the destination. The destination then either successively or jointly decodes the compression of the relay’s
observation and the original message of the source. In the original C-F scheme of [2], the decoder performs
successive compression-message decoding, i.e., it first decodes the compression of the relay’s observation,
and then decodes the original message of the source, leading to the following achievable rate:

max  I(Xo; Y, Y| X)) 2)
p(zo)p(z1)p(91ly1,21)
such that  I(Yy; V1| X1, Ys) < I(Xy:Ya), 3)

where (3) ensures that the compression Y; can be first recovered at the destination, and (2) ensures that
the destination can decode the original message X, based on Y7 and Y; together.

The two-step compression-message successive decoding process in [2] requires Y; to be decoded first,
which facilitates the decoding of X, but is not a requirement of the original problem. Recognizing this,
a joint compression-message decoding process was proposed in [5], where, instead of successively, the
destination decodes Y; and X together. It turns out that the decoding of X, can be helped even if Y}
cannot be decoded first. In fact, with joint decoding, the constraint (3) is not necessary, and instead of
(2), the achievable rate is expressed as

R < max  I(Xo; Y1, Ya|X1) — max{0, 1(Y3; Y| X1, Ya) — [(Xy; Ya)}- (4)
p(zo)p(z1)p(d1ly1,21)

Similar formulas as (4) have been derived with different arguments in [6]-[8]. Therefore, compared
to successive decoding, joint compression-message decoding provides more freedom in choosing the
compression Y;. However, the question remains whether joint decoding achieves strictly higher rates for
the original message than successive decoding. For the single relay case, it was proved in [8] that the
answer is negative, and any rate achievable by either of them can always be achieved by the other, i.e., the
achievable rates in (2)-(3) and (4) are essentially the same. In fact, as we will see later in the Introduction,
when C-F is generalized to the case of multiple relays, there is no improvement on the achievable rate
by joint decoding either.

Combining the D-F and C-F together, one can further consider the hybrid scheme, where the relay
partially decodes the message and compresses the rest of its received signals; see, e.g., [2, Thm 7] for
the single-relay case and its extension to the multiple-relay case in [9]. However, such hybrid schemes
generally involve superposition coding that induces auxiliary random variables, making the expression
and evaluation of the achievable rates rather complicated especially in the case of multiple relays that we
will consider in the sequel. Thus, in this paper, our discussion focuses on the “pure” D-F or C-F strategies
only, i.e., the strategies where the relay either completely decodes the message, or does not decode at all
but simply compresses and forwards its observation.



B. D-F and C-F for multi-relay channels

A natural extension of the single-relay channel in Fig. 1 is to the case of multiple relays depicted in
Fig. 2, where nodes 0 and n + 1 are the source and the destination respectively, and nodes 1,2,...,n are
the n relay nodes that constitute the relay nodes set, denoted by A. Both the D-F and C-F relay strategies
have been separately generalized to such multi-relay channels in [10]-[20], among which, [13]-[16] and
[18]-[20] provide the best achievable rates for D-F and C-F respectively.

Specifically, in generalizing D-F to the multi-relay channel, [13]-[14] modified the original irregular
encoding/successive decoding scheme of [2] to a regular encoding/sliding window decoding scheme to
realize the “multi-level” D-F relay strategy. For any fixed permutation 7 on {0,1,...,n+1} with7(1) =0
and w(n + 2) = n + 1, i.e., any specific ordering of the relay nodes as w(2),7(3),...,n(n + 1), their
multi-level D-F scheme [13]-[14] achieves the following rate:

R < e ax L min I(Xrk-1) Yae) | X (kint1))s (5)
where 7(ky : ko) := {m(k1),m(k1 + 1),...,m(ko)}. Later on, it was found in [15]-[16] that (5) can also
be achieved with backward decoding.

The formula (5) has a similar interpretation as (1). For each node 7(k),k = 2,3,...,n + 2, the
corresponding rate constraint is

R < I(Xrak-1); Yok [ Xn(hint1)) (6)

which implies that for the decoding at node w(k), the signals transmitted by nodes m(k + 1 : n + 1)
are known a priori, and the signals transmitted by nodes 7(1 : k£ — 1) are cooperating in providing the
information. A simple explanation of this feasibility is the following. In the multi-level D-F relay strategy,
information is passed along the route 7(1) — 7(2) — --- — m(n+2), so that i) any information obtained
by the downstream nodes of 7(k), i.e., nodes w(k + 1 :n + 1), has already been obtained by node (%),
and therefore their inputs are predictable by node 7(k), and ii) by the time the information reaches node
7(k), all its upstream nodes 7 (1 : k — 1) have already obtained the same information and can therefore
cooperate with the technique of block Markov coding. The formula (5) also demonstrates a remarkable
feature of the multi-level D-F relay strategy in [13]-[16], i.e., it completely eliminates the interference in
the network: To any node, the signal transmitted by any other node is either a “real” signal that can be
used for decoding, or a priori known signal that can be subtracted completely.
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Fig. 2. The multiple-relay channel.

In the line of generalizing C-F to multi-relay channels, substantial advances have been recently made in
[18]-[20]. First, in [18], a new C-F scheme termed noisy network coding was proposed. Different from the
original C-F scheme of [2], where cumulative encoding/block-by-block forward decoding was used, this
noisy network coding scheme employed repetitive encoding/all blocks united decoding. Besides, it also
used compression-message joint decoding without uniquely decoding the relays’ compressions, instead of
compression-message successive decoding as in the original C-F scheme. It turns out [18] that the noisy
network coding scheme achieves the same rate as the original C-F scheme for the single-relay channel,
but improves the original C-F scheme in the case of multiple relays to achieve higher rates as follows:

R < max min I(Xo, Xs:; Yans, Yo |X I(Ys: Ys| X0, X, Yos1, Yins). (7
(o) Tt oS p(ilyan) B (X0 X Yans: Yua | Xans) = 1 (¥si Xl Xo, X Yo, Yins)- - (T)



However, soon in [19]-[20], it was discovered that neither repetitive encoding/all blocks united decoding
nor compression-message joint decoding used in [18] is necessary to achieve the rate (7); in particular, a cu-
mulative encoding/block-by-block backward decoding/compression-message successive decoding scheme
was developed, and its corresponding achievable rate was shown to be the same as (7), with the following
form:

max I(Xo: Vv, Yoir| X (8)
p(0) TTiy plo o 2:.1) (Xo; Yo Yo | Xv)
such that I(Xs; Yins, Yar1| Xans) — 1(Ys; Ys| X, Yor1, Yans) > 0,YS C N, (9)

where (8)-(9) can be similarly interpreted as (2)-(3) for the single-relay case, i.e., (9) ensures that the
relays’ compressions Y, can be first recovered at the destination, and (8) ensures that the destination can
decode the original message of the source based on Y,,; and Y, together. Note that the rate equivalence
between (7) and (8)-(9) also demonstrates that in the case of multiple relays, there is no improvement on
the achievable rate by joint compression-message decoding either, which is consistent with the conclusion
made in the single-relay case. More interestingly, in proving such a rate equivalence, [19]-[20] found that
the the R.H.S. (right-hand-side) of (7) is maximized only when the compressions Y, are chosen to satisfy
(9), 1.e., to maximize the achievable rate for the original message, the compressions should always be
chosen to support successive decoding, and any compressions not supporting successive decoding will
actually lead to strictly lower achievable rates for the original message.

Since block-by-block backward decoding and compression-message successive decoding are relatively
easier to implement than all blocks united decoding and compression-message joint decoding respectively,
the cumulative encoding/block-by-block backward decoding/compression-message successive decoding
scheme of [19]-[20] becomes the simplest choice in achieving the highest C-F rate in the case of
multiple relays. Moreover, the fact that this scheme achieves the same rate as noisy network coding
also reveals the essential reason for the improvement of the achievable rate—not repetitive encoding/all
blocks united decoding, not joint compression-message decoding, but delayed decoding until all the blocks
have been finished. This delayed decoding is generally necessary because the multiple-relay case differs
from the single-relay case in that it may take multiple blocks for the relays to help each other before
their compressions can finally reach the destination. Hence, the block-by-block forward decoding scheme,
which is sufficient for the single-relay case, may not work satisfactorily for multiple relays in general
[20].

It is worth noting that although the optimal C-F rate is achieved only when the compressions are chosen
to support successive decoding in single-destination networks, in a network with multiple destinations
([18], [20]), the compressions may not be chosen to support successive decoding at all the destinations,
and joint decoding might have to be used. For this, a more general scheme of cumulative encoding/block-
by-block backward decoding/compression-message joint decoding was developed in [20]. For any given
distribution p(zo) [[;—, p(z:)p(9:|xi, yi), this scheme achieves the following rate:

R < min I(Xo, Xs; Yp\s, Yorr|Xp\s) = I(Vs: Vs|Xo, Xp, Yorr, Yo s). (10)

where D is the unique largest subset of N satisfying
[(Xs:Yprs, Yas1| Xo, Xp\s) = 1(Ys; Y| Xo, X, Yasr, Yois) > 0,¥S € D, S #4, (11

and Yp can be decoded jointly with X. Here, D can be interpreted as the “jointly decodable” relay nodes
set such that the compressions of the relays in this set are decodable jointly with the original message Xj.
In contrast, the compression of any relay node in A/ \ D’ is not decodable even jointly with X, where
D' is the unique largest subset of A satisfying

]<XS7 YD’\S? YTL+1|X07 XD’\S) - I(YSJ ?S|XO7 XD’7 Yn+17 YD’\S) Z O,VS g D/' (12)



On the other hand, for any given distribution p(x¢) [ [/, p(x:)p(¥:|:, vi), the achievable rate (7) can
be more generally expressed as

R < minI(Xp, Xs; Vs, Y| Xris) = 1(Ys: Vs | Xo, X7, Vs, Y1) (13)

if we only consider a subset of relays 7 C N for the decoding, while treating the other inputs as purely
noise. Interestingly, it was found in [20] that among all the choices of 7 C N/, the RH.S. of (13) is
maximized when 7 = D or 7 = D/, but is strictly less than the maximum when 7T g D’. Therefore,
only those relays whose compressions are jointly decodable are helpful to the decoding of the original
message, and including the jointly un-decodable compressions in the formula (13), i.e., choosing 7 ¢ D',
will even strictly lower the achievable rate.

By comparing (10) and (13) with 7 = D, it can be concluded that for any compressions chosen at the
relays, the cumulative encoding/block-by-block backward decoding/compression-message joint decoding
scheme of [20] achieves the same rate as the noisy network coding scheme [18].!

C. A unified relay framework with both D-F and C-F relay nodes

In the above discussions, all the relay nodes in the network perform only one type of relay strategy,
either D-F or C-F. However, to obtain higher achievable rate, it might be better to let each relay node
choose from D-F and C-F its relay strategy depending on the channel condition, e.g., let the relay node
close to the source perform D-F while let the relay node close to the destination perform C-F. This
invokes a unified relay framework that includes both the D-F and C-F relay nodes in the network. In
developing such a framework, one naturally wants to combine the advantages of both the best known D-F
and C-F schemes, i.e., the multi-level D-F schemes in [13]-[16] and the recent advances on C-F schemes
in [18]-[20].

Some attempts towards this unified relay framework have been made in [16, Thm 4], [24]. The work
[16], however, had been done before noisy network coding was proposed, and thus the recent progress
on C-F schemes was not reflected in it. Moreover, in the scheme of [16, Thm 4], the relay nodes are not
fully cooperating in the sense that the D-F relay nodes do not utilize the help of the C-F relay nodes. In
the recent work [24], the authors incorporate noisy network coding to their scheme and let the D-F relay
nodes exploit the help of the C-F relay nodes. Nevertheless, [24] does not use the multi-level D-F schemes
as in [13]-[16]. Instead, all the D-F relay nodes in [24] are at the same level, and thus the decoding at
each D-F relay node cannot exploit the help of other D-F relay nodes. Besides, in [24], although the
destination performs backward decoding to fully exploit the help of the C-F relay nodes, the decoding at
each D-F relay node is based on two consecutive blocks only and thus does not fully utilize the help of
the C-F relay nodes as in [18]-[20].

Indeed, it turns out that, to incorporate in full the advantages of both the best known D-F and C-F
relay strategies into a unified framework is nontrivial due to the following major challenge: For the D-F
relay nodes to fully utilize the help of the C-F relay nodes as in [18]-[20], decoding at the D-F relay
nodes should not be conducted until all the blocks have been finished; however, to perform the multi-level
D-F strategy as in [13]-[16], the upstream nodes have to decode prior to the downstream nodes in order
to help, which makes simultaneous decoding at all the D-F relay nodes after all the blocks have been
finished inapplicable.

To tackle this problem, nested blocks ([15]-[16], [25]) combined with backward decoding are used in
our framework, so that the D-F relay nodes at different levels can perform backward decoding at different
frequencies: the closer to the source in the information passing route, the higher decoding frequency.
As such, the upstream D-F relay nodes can decode before the downstream D-F relay nodes and the
destination, and the use of backward decoding at each D-F relay node ensures the full exploitation of the
help of both the other D-F relay nodes and the C-F relay nodes.

"Part of the results in [19]-[20] have also been recognized in [21]-[23].



Specifically, we partition the relay nodes set A into two sets, M with |[M| = M and N'\ M, as depicted
in Fig. 3, and fix some permutation 7 on {0} [JM |J{n + 1} with 7(1) = 0 and 7 (M +2) = n+ 1. Let
the relay nodes in M perform the multi-level D-F cooperatively along the route 7(1) — 7(2) — --- —
w(M+2), while let each node i € N\ M perform C-F as in [18]-[20] independently. Then, a total of BMH+1
blocks will be used and the length of a “virtual” block for node 7(k),k = 2,3,..., M + 2, will be B*~2
blocks. The backward decoding at the destination, i.e., node 7(M +2), will happen at the end of all B!
blocks, while the backward decoding at the D-F relay node 7 (k), k = 2,3, ..., M+1, will happen whenever
it has received B new “virtual” blocks, i.e., at the end of each block b = vB*~! v € [1 : BM*1/Bk-1],
Also, both the D-F relay nodes and the destination will perform compression-message joint decoding,
which is in general necessary since the compressions of the C-F relay nodes may not be chosen to
support successive decoding at all the D-F relay nodes and the destination.

Under the above described framework, for any given distribution p(zo)p(2a|®o) [ Liean aa 2(@:) (il i, ),
the following rate is achievable:

R < QSI?%i]I\/}-i-Q Sngnli [(Xﬂ(12k71)7 X$7 YDk\Sa YTr(k) ’XDk\$7 Xﬂ’(k:MJrl))_[(YS; YS‘XT('(IIMJrl)) XDka Yﬂ'(k)) YDk\S)a
(14)

where Dj, is the unique largest subset of N\ M satisfying
I(X87 YD;C\S7 Yﬂ(k) |X7T(I:M+1)7 XDk\S) - I(YSa }A/S|X7r(1:M+1)7 XDIN Y7T(k2)7 }A/'Dk\8> > 07 (15)

for any nonempty S C Dy.

7(1)/0 (M +2)/n+1

Fig. 3. A unified relay framework with both the D-F and C-F relay nodes.

(14) has the flavors of both (5) and (10). Specifically, for each node w(k),k = 2,3,..., M + 2, the
corresponding rate constraint is
R < nguDri I(Xﬂ'(lik—l)7 X57 YDk\S7 Yw(k) ‘XDk\Sa XTr(k:M-l—l)) _[(YS; YS‘XT('(IIM-"-:[)? XDk> Yw(k)a YDk\S)a (16)
which is in a form similar to (10) but with the appearance of X (1.x—1), Xa(x:ar41) and Xy (1:a741). (16) has
the similar form as (10) since node (k) uses the help of the C-F relay nodes as in [19]-[20]. Xr(1:k—1)>
Xr(k:m+1) and Xr1:041) appear in (16) because node 7(k) also utilizes the help of other D-F relay nodes
as in [13]-[16] so that the signals of its upstream nodes, i.e., X .x—1), are cooperatively providing the
information while the signals of its downstream nodes and itself X .1/41) are known at 7(k). Also, the
set Dy, defined in (15) has a similar interpretation as the set D defined in (11), 1.e., the “jointly decodable”
C-F relay nodes set at node 7 (k) such that the compressions of the relays in this set are decodable jointly
with X (1.,—1) given that X (.as11) are known at node 7 (k).



It can be easily seen that (14) includes the achievable rates in (5) and (10) as special cases: When
M = N, ie., all the relays perform D-F, D, = () and (14) reduces to (5); When M = (), i.e., all the
relays perform C-F, (14) reduces to (10).

Finally, it should be noted that, the achievable rate (14) is proved by using the block-by-block backward
decoding scheme in [20]. We can also modify the all blocks united decoding scheme in [18] to a B-
blocks-by-B-blocks backward decoding scheme, to fit it into our unified relay framework and prove the
following achievable rate:

R < 2§I€I%i]3+2 Smax ‘Iglél% I(Xrap-1), Xs: Y708, Y [ X708 Xreevi) =1 (Ys; Y| Xnimn), X7i, Yae), Y70s)-
(17)

Similarly to the equivalence between (10) and (13), here (14) and (17) are also equivalent. One can also
easily check that (17) includes the achievable rates in (5) and (13) as special cases by letting M = N
and M = () respectively. Notably, again, in terms of complexity, block-by-block backward decoding is
relatively easier to implement since B-blocks-by-B-blocks backward decoding involves B blocks united
decoding.

The remainder of the paper is organized as the following. In Section II, we formally state our problem
setup and summarize the main results. Then, in Section III and Section IV, our unified relay framework
with block-by-block backward decoding and with B-blocks-by-B-blocks backward decoding will be
presented in detail respectively. Finally, some concluding remarks are included in Section V.

II. MAIN RESULTS

Consider a multiple-relay channel consisting of n + 2 nodes, as depicted in Fig. 2, where nodes 0 and
n—+1 are the source and the destination respectively, and nodes 1,2, ..., n are the n relay nodes. Formally,
this channel can be denoted by

(XO X Xl X oo X Xn, p(yn+1,y1,...,yn’.l’o,itl,...,.fl}'n), yn+1 Xyl X Xyn)

where, Xj, X1, ..., X, are the transmitter alphabets of the source and the relays respectively, YV, 11, V1,..., Vn
are the receiver alphabets of the destination and the relays respectively, and a collection of probability
distributions p(-, -, ..., |xo,Z1,...,2p) o0 Vi1 X Vi X -+ X Yy, one for each (xg,x1,...,2,) € Xy X

Xy x - -+ x X,. The interpretation is that x is the input to the channel from the source, ¥, is the output
of the channel to the destination, and y; is the output received by the i-th relay. The i-th relay sends an
input z; based on what it has received:

zi(t) = ris(yi(t — 1), y:(t — 2),...), for every time t, (18)

where r;;(-) can be any causal function.

Before presenting the main results, we introduce some simplified notations. Denote the set N =
{1,2,...,n}. For any subset S C {0,1,...,n+ 1}, let X5 = {X;,i € S}, and use similar notations
for other variables. For any M C N with |[M| = M, let 7({0, M,n + 1}) be a permutation on
{0} UM U{n+1} with 7(1) = 0 and 7(M+2) = n+1, and let w(ky : ko) = {7 (k1), 7(k1+1),...,7(ko)}.

Under our unified relay framework as described in the Introduction, the following Theorems 2.1 and 2.2
present the achievable rates by block-by-block backward decoding and B-blocks-by-B-blocks backward
decoding respectively. The coding schemes used to prove these theorems constitute the key contributions
of our paper, and will be presented in detail in Sections III and IV respectively.

Theorem 2.1: For the multiple-relay channel, a rate R is achievable if for some M C N with M| =M,
there exists a permutation 7({0, M,n + 1}) and some

pl@)p(wol)p(@plao, q) ] plwila)p(@ilys, v, q),
1EN\M



such that for any £ =2,3,... . M + 2,

R < min I(Xn(ho1), X3 Yos: Yam | Xpp\ss Xarearsn), Q) — I(Ys; Yo | Xaqnriny, Xoys Yary, Yoris: Q),
]
(19)
where Dj, is the unique largest subset of N\ M satisfying

I(Xs; Y8, Yao| Xeiars1), Xpos: Q) — I(Ys: Ys| Xnqarrn), Xoy, Ve, Yous: @) > 0, (20)

for any nonempty S C D;.
Theorem 2.2: For the multiple-relay channel, a rate R is achievable if for some M C N with |[M| = M,
there exists a permutation 7({0, M,n + 1}) and some

p@)p(olg)p(rmlzo,q) ] plail)p(@ilyi, i),
1EN\M

such that for any k =2,3,..., M + 2,

R < Tkrgﬂﬁ/fM min I(Xre-1), Xs: Y708 Yao | X708, Xn(emr41), Q) —1 (Ys; Y| X1y, X7, Yae), Yrns, Q)-
(21)

The following theorem establishes the equivalence between the achievable rates in Theorems 2.1 and
2.2. The proof of this theorem can be immediately obtained by analogy to the proof of [20, Thm 2.8]
and will be omitted in this paper.

Theorem 2.3: For any M C N with |M| = M, any permutation 7({0, M, n + 1}), any distribution

p(@)p(xolg)p(zpmlzo,q) T[] plwsla)p(@ilys, xi,q),
1EN\M

and any k = 2,3,..., M + 2, the maximum in the R.H.S. of (21) is attained when 7, = Dy, where Dj,
is as defined in (20).

Remark 2.1: Finally, we point out that Theorems 2.1 and 2.2 can also be applied to multiple-destination
problems, by choosing the D-F relay nodes set M to include the other destinations.

A. An example of Gaussian networks

We now apply the above results to additive white Gaussian noise (AWGN) networks and compare the
achievable rates under our unified framework to the rates with D-F or C-F alone and with other unified
schemes [16], [24]. In particular, we consider an AWGN two-relay channel with the geometry shown in
Fig. 4, where nodes 0 and 3 are the source and destination respectively, and nodes 1 and 2 are the relay
nodes. This channel is described by

Y1 = gnXo + gnXo + 74,
Yo = goaXo + g12.X1 + 2o,
Y3 = gosXo + g13X1 + g3 Xo + Zs,

in which, the channel gains are go3 = 1, go1 = g23 = A2, goo = 13 = (1 — d)™2, g1a = go =
(1 —2d)_a/ 2 where « is the path-loss exponent; the noises 2, Z5, Z3 are zero-mean unit-variance Gaussian
random variables that are independent of each other and the channel inputs. We further assume uniform
average power constraint P on each transmitter X;,7 = 0, 1,2, and noncoherent transmission among the
transmitters, i.e., Xy, X, X5 are independent.2 The achievable rates with our unified schemes and various
other schemes are evaluated for this two-relay channel in Appendix A. Fig. 5 plots these rates for P = 10,
a =2, and d € (0,0.5). As can be seen, the rates with our unified schemes are generally better than the
rates with existing unified schemes and with D-F or C-F alone. Detailed analyses based on Fig. 5 are as
follows.



Fig. 4. A two-relay channel.
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Fig. 5. Achievable rates for the two-relay channel.

D-F vs. C-F: The D-F and C-F achievable rates plotted in Fig. 5 are the multi-level D-F rates [13]-[16]
and noisy network coding rates [18]-[20] respectively. Roughly speaking, when d is relatively large, D-F
performs better than C-F; when d is relatively small, C-F outperforms D-F. This is because, relatively large
d means that both relay nodes are not far from the midpoint, which facilitates the use of multi-level D-F;
while when d is small, i.e., when relay nodes 1 and 2 are respectively close to the source and destination,
the D-F scheme still requires node 2 to be able to decode the message, thus limiting the achievable rate
for the channel compared to the C-F scheme which has no requirement of decoding at either relay node.
Also note here the highest D-F rate is achieved when d is around 1/3, i.e., when relay nodes 1 and 2 are
approximately evenly distributed along the line.

“The assumption of noncoherent transmission is made mainly to simplify the evaluation of the achievable rates; nevertheless, it does
also reflect some realistic wireless communication scenarios, e.g., the phase-fading channels with the phase information unknown to the
transmitter, so that coherent beamforming cannot be achieved [16].



Our unified schemes vs. D-F or C-F alone: With multi-level D-F and noisy network coding included as
their special cases, our unified schemes achieve the same rate as multi-level D-F when d is around 1/3,
and provide considerable gains on the achievable rates against using D-F or C-F alone as d decreases or
increases from around 1/3. The interpretation is that, in our unified schemes, for d around 1/3, nodes 1
and 2 should perform multi-level D-F; otherwise, a better choice is to let node 1 perform D-F while let
node 2 perform C-F. It is not surprising that as d decreases from around 1/3, i.e., as nodes 1 and 2 move
towards the source and destination respectively, introducing the freedom of choosing nodes 1 and 2 to be
the D-F and C-F node respectively can improve the achievable rates, compared to performing D-F or C-F
alone at both relay nodes. However, it may not be so obvious why this choice of the D-F and C-F node
also leads to better achievable rates than multi-level D-F as d increases from around 1/3, i.e., as relay
nodes 1 and 2 move towards each other. For this, one has to realize that in our schemes, D-F node 1,
when decoding the message from source node 0, also exploits the help of C-F node 2, which could result
in a looser rate constraint for decoding at D-F node 1 than in multi-level D-F, thus potentially improving
the achievable rate for the channel. In contrast, if the D-F node does not utilize the help of the C-F node,
which is the case in the unified scheme of [16], then, as d increases from around 1/3, this gain will not
happen.

Our unified schemes vs. unified scheme in [16]: Generally, the unified scheme in [16] also improves D-F
alone by introducing the flexibility of choosing node 2 to be C-F node, but cannot achieve the same rates
as our unified schemes. The reasons are two-fold as mentioned in Subsection I-C, i.e., i) it incorporates an
inferior C-F scheme instead of noisy network coding, and i1) it does not allow the D-F node to utilize the
help of the C-F node. For the first reason, it cannot achieve the noisy network coding rates for d roughly
between 0.1 and 0.24. Due to the second reason, it cannot provide any gain against using multi-level D-F
as d increases from around 1/3, in contrast to our unified schemes.

Our unified schemes vs. unified scheme in [24]: Our unified schemes also outperform the unified scheme
in [24]. Recall that there are two drawbacks in the scheme of [24]. First, in the scheme of [24], all the
D-F relay nodes are at the same level, and thus it cannot achieve the same rates as multi-level D-F for
d € (0.24,0.34). Second, it does not allow the D-F node to perform backward decoding to fully utilize the
help of the C-F node as in our schemes, which, together with the first drawback, leads to lower achievable
rates than our schemes for d € (0.1,0.36).

III. UNIFIED RELAY FRAMEWORK WITH BLOCK-BY-BLOCK BACKWARD DECODING

To prove Theorem 2.1, we incorporate the multi-level D-F scheme in [13]-[16] and the cumulative
encoding/block-by-block backward decoding/comression-message joint decoding C-F scheme in [20] into
the unified relay framework described in the Introduction.

Specifically, we divide the relay set N into two sets, M with |M| = M and N \ M, as shown in Fig.
3, and fix some permutation 7 ({0, M,n+1}) with 7(1) = 0 and 7(M +2) = n+ 1. The source performs
cumulative encoding, in the sense that a new message is encoded at the source in each new block; the
nodes in M perform the multi-level D-F cooperatively, along the route 7(1) — 7(2) — --- — (M +2),
in a similar manner with [13]-[16]; each node i € A"\ M performs C-F independently in the same way as
[18]-[20]; both the D-F relay nodes and the destination node, i.e., nodes 7 (2 : M+2), perform compression-
message joint decoding in a block-by-block backward manner. (Note here, the nodes (2 : M + 2) will
be treated as multiple destinations with respect to the C-F relay nodes, and thus compression-message
joint decoding is generally necessary at the these nodes, as mentioned in the Introduction.) A total of
BM+1 blocks will be used and the length of a “virtual” block for node m(k),k = 2,3..., M + 2, will
be B*~2 blocks. The backward decoding at the destination, i.e., node (M + 2), will happen at the end
of all BM+1 blocks, while the backward decoding at the D-F relay node 7 (k), k = 2,3,..., M + 1, will
happen at the end of every B*~! blocks, i.e., at the end of block b = vB*~! v € [1: BM*1/Bk-1],

To make the presentation of the detailed coding scheme easier to follow, we first consider the case of
single D-F relay node, i.e., when M = 1, and then present the extension to the general case of multiple
D-F relay nodes, i.e., when M > 2.



A. Single D-F relay node (M = 1)

Assume that, among the relay nodes set A, only node 1 is the D-F relay node, and all other relay
nodes are the C-F relay nodes. Denote N = N\ {1}. Specializing Theorem 2.1 to this case, we have
that a rate R is achievable, if there exists some

p(@)p(xolg)p(z1]o, ) | | p(aila)p(@ilys, i, q),

ieN
such that
SIICI%l I<X07 X$7 Y'D1\57 Yl’Xla X’D1\S7 Q) - ](YS) }A/$|X07 X17 XDN )/17 }A/D1\37 Q)
R < min =7 R R R
Sglpin ](Xm X1, Xs; YDn+2\87 Yn+2|XDn+2\Sa Q) - I(YS; Y3|X0, X1, XDn+2» Yoo, YDHQ\S; Q)
=En42
(22)

where D; is the unique largest subset of N satisfying
I(Xs; Y5, Y1l X0, X1, Xp\s. Q) — (Y1 Vs|Xo, X1, Xp,, V1, ¥y, Q) > 0, (23)
for any nonempty S C D;, and D, is the unique largest subset of N satisfying
[(Xs; Y/DHQ\& Yn+2’X07 X1, XDHH\S, Q) - I(Ys; Y3|X0, X1, XDnJrQ, Yoo, YDHH\Sa Q) >0, (24)

for any nonempty S C D, .

The uniqueness of D; and D, > can be immediately obtained by analogy to the proof of [20, Thm
2.7]. Below, we focus on proving the achievablity of the rate in (22). For simplicity of notation, we only
prove the achievability for the case () = (). Achievability for an arbitrary time-sharing random variable @
can be obtained by using the standard technique of time sharing [26], [8]. The same consideration on ()
applies throughout all the proofs of this paper.

In the case of single D-F relay node, a total of B2 blocks will be used; the backward decoding at the
destination node n + 2 will happen at the end of all B? blocks, while the backward decoding at the D-F
relay node 1 will happen at the end of every B blocks, i.e., at the end of block b = vB,v € [1 : B]. See
Fig. 6 for an illustration. Note here, in order to fully utilize the help of the C-F nodes as in [18]-[20],
even the only D-F relay node 1, has to perform backward decoding, which is different from the situation
arising in [15]-[16] and [25], where there is no issue of exploiting the help of the C-F nodes and node 1
can decode at the end of every block. The detailed codebook generation and encoding/decoding process
are as follows, which can be understood with the help of Table I.

(mp,...,m1) (m2p,...,mp41) (Mp(g_1):---:MpB(B—2)41)
Decoding at | + + + |
D-F node 0 B 2B SS B(B-1) B2
(mpg2,...,m1)
Decoding at | | | S | +
destination 0 B 2B S B(B—-1) B2

Fig. 6. An illustration of nested blocks with backward decoding.

Codebook Generation: Fix p(xo)p(z1|zo) [ [;c 0 p(@:)p(9ilyi, ;). We randomly and independently gen-
erate a codebook for each block.

i) First consider the codebook generation for the source node O and the D-F relay node 1. A joint
codebook for these two nodes will be generated in a backward manner similar to [14] for each block.
Specifically, for each block b € [1 : B?], randomly generate 277 independent sequences xi ;(my_p) for



node 1, and randomly generate 277 conditionally independent sequences X (my|my,_g) for node 0, where
my, mp_p € [1: 27%]. As in [14], the codebook is generated in the backward manner because the source
node 0 knows what the D-F relay node 1 is going to transmit, and therefore can adjust its own transmission
accordingly, but not the converse. The difference from [14] is that here the delay between the messages
transmitted by node 1 and node O is B blocks, instead of 1 block in [14], since in our framework node
1 has to wait for every B blocks to perform backward decoding for exploiting the help of the C-F relay
nodes.

ii) Then we generate the codebooks for the C-F relay nodes in the same way as in [18]-[20]. For each
block b € [1 : B?] and each relay node i € N, randomly and independently generate 277 sequences
Xip(lip-1)s lip—1 € [1: 277], where R; = I(Y;; Y;|X,) +e; for each relay node i € N and each x;4(l; 1),
lip—1 € [1 : 2"%], randomly and conditionally independently generate 27" sequences ¥;(lis|lip—1),
l@b S [1 : QTRi].

The combination of i) and ii) defines the codebook for any block b € [1 : B,

Gy = {Xl,b(mb—B),Xo,b(mb|mb—B) s mp, my—p € [1: 277

xia(lio 1), Fiolliallion) i lipr € [1:277) i € N}, 25)

Encoding: Let m = (mq, mo, ..., mp2) be the message vector to be sent and let m;, = 1 be the dummy
message for any

beUh[wB—L+1:wB]|J(B-1)B+1: B (26)

and for any b < 0. As we will see, these dummy messages are inserted to ensure the start of block-by-block
backward decoding. Due to these dummy messages, the actually achievable rate becomes B=L)B-V) p.
which, however, can be made arbitrarily close to R by choosing L < B, i.e., the rate loss %R
can always be made arbitrarily small.

TABLE I
BLOCK-BY-BLOCK BACKWARD DECODING FOR THE SINGLE D-F RELAY NODE CASE

Block 1 2 B —L B—-L+1 B

Xo x0,1(m1|1) x0,2(m2|1) x0,B—L(mp-r|1) x0,B—L+1(1[1) x0,5(1[1)

Yy 0 0 0 0 (m1,ma,..., mpg)

X1 x1,1(1) x1,2(1) x1,B-1r(1) x1,B-r+1(1) x1,5(1)

Y i) Y520k 2k 1) y./\./',B—L“./\./',B—Lll/\./,B—L—l) y./\./',B—L+1(l./\7,B—L+1|l/\7,B—L> 5'/\'/,)3(11\7‘,3“,/\7,371)

Xxr xxr,1(1) x5 205 1) *xr - BoL-1) X p-r+1Ux B-L) x5, 8K 1)
Y g2 1) 1) ) ) )

Block B2 - B+1 B2 - L B2 —L+1 B?

Xo %0,82-p4+1(1IMmp2_sp11) %9 p2_p(lmpg2_pg_p) X, 52 _p41(111) %o, 52 (111)

v 0 1) ) (Mp2_pgyir my2)
X1 x1,82_p+1(MpB2_sp41) x1.p2_r(mp2_p_r) x1 p2_p41(1) xy, g2(1)

Yy yN,BQ—B+1(lj\_/,B2—B+1|l,’\_/,B2—B) y_/\_/’,BQ—L(lJ\_/,B2—L”_/\7,B2—L—1) yN,B2—L+1(l,r\'/,BQ—L+1|lJ\7,BQ—L) 5’]\7,32(1/\7,32”1\7’,32—1)
XN x5 g2-py1U5 B2 B) x5 g2 B2_L_1) x5 B2-n4+1(%,B2-L) xxr,82 (N, B2 1)
Yoio 1) 1) ) (m1,ma, ..., my2)

1) First consider the encoding process for nodes 0 and 1.

« In block b € [1 : B?], the source node 0 transmits X (1mp|msy_5).
« At the end of block vB,v € [1 : B — 1], the D-F relay node 1 has decoded messages

(mvB—BH, MmyB—B+2; - - ,mvB)



using backward decoding (see the decoding part). In the next B blocks, i.e., in block b € [vB + 1 :
(v+1)B], the relay node 1 transmits x; ,(m_p), Where m;,_p for any b € [vB+1: (v+ 1)B]) has
been decoded by block vB.
ii) For any block b € [1 : B?], each relay node i € N, upon receiving y;; at the end of block b, finds
an index [;; such that

(Xip(liv—1), Yip, Yin(lipllin—1)) € Ac(X;, Y5, ),

where ;o = 1 by convention. In block b € [1 : B?], the relay node i € N transmits X p(lip—1)-
Decoding: We present the decoding process at the D-F relay node 1 and at the destination node n + 2

separately.

i) At the end of block b = vB,v € [1 : B], the D-F relay node 1 decodes messages

(Mb—B11, Mp—B12, -+ -, M)
using block-by-block backward decoding. In fact, among these messages, (mp_r41, Mp_r12,--.,My) are
dummy messages according to (26) and only (my_pi1, Mp_pBi2,- .., Mp_r) need decoding.

« a) Node 1 first finds the unique Ip, ,—;, = {lip—r,% € D1} such that there exists some lthbfL I
satisfying that for any block j =b— L+ 1,b— L+ 2,...,0,

(XO,j(mj|mjfB); Xl,j(mjfB)v {(Xi,jai,jfl)?Yz’,j(li,j”i,jfl)) NS Dl},YLj) c AE(XO, X1, Xp,, YDUYI)-
(27)

Note in (27), forany j = b— L +1,b — L +2,...,b, m; and m;_p are both dummy messages
according to (26), and both X ;(m;|m;_p) and X, j(m;_p) are known at node 1. Then, it follows
from the proof of [20, Thm 2.7] that [p, ;_; can be decoded if

[(Xs; Yps, Yi|Xo, X1, Xpps) — 1(Ys; Ys|Xo, X1, Xp,, Vi, Yops) > 0, (28)

for any nonempty S C D;. For self-containedness, we also include the details on the derivation of
(28) in Appendix B.

« b) Backwardly and sequentially from block j =b— L to j = b— B+ 1, node 1 finds the unique pair
(my, lp, j—1) satisfying (27), where lp, ; has already been recovered due to the backward property of
decoding, and m;_p has been decoded by block b — B.

At each block j = b~ L,b— L —1,...,b— B+ 1, error occurs with m; if the true m; does
not satisfy (27) with any lp, ;_;, or a false m; satisfies (27) with some Ip, j_;. According to the
properties of typical sequences, the true (m;,lp, ;_1) satisfies (27) with high probability.

For a false m; and a lp, ;_; with false {l; ;_1,7 € S} but true {l; j_1,7 € D1\S}, Xo j(m;|m,_g) is
conditionally independent of {(X; ;(li-1), Y, ,;(lijllij1)) i €Dy} and Y ; given X, j(m;-p); and
{(Xi,j(li,jfl)a Yi,j<li,j|li,j71)) 11 E S} are independent of {(Xi,j(li,jfl)a Yi,jai,j’li,jfl)) 11 E Dl\S},
lej(mj_B) and Yl,j~

Therefore, the probability that such false (m;,lp, ;_1) satisfies (27) can be upper bounded by

9T (H(X0,X1,Xp, Yp, ,Y1)+e) o~T(H(X1,Xp, \8:YDy\5:Y1)—¢€)
% Q*T(H(XO‘Xl)*G)Q*T(H(XS)*E)2*T(Z¢55(H(Yi‘Xi)*€)) )

Since the number of such false (1, lp, ; 1) is upper bounded by 277 [[,_; 27 Y¥ilX0+9) with the
union bound, it is easy to check that the probability of finding a false m; goes to zero as T" — oo, if

R < min I(Xg, Xs; Yops, V1| X1, Xpps) — 1(Vs; Y| Xo, X1, Xp,, Vi, Yo,us)- (29)

SCD,

Then, based on the recovered m;, m;_p, and lp, ;, again from the proof of [20, Thm 2.7], it follows
that Ip, ;1 can be decoded if (28) holds.



By a) and b) together, at the end of block b = vB,v € [1 : B], the D-F relay node 1 can decode
messages (my_pgi1, My_pio,---,my) if both (28) and (29) hold.

ii) At the end of all B? block, the destination node n + 2 decodes messages (my,ms, ..., mp2) using
block-by-block backward decoding. Similarly, we only consider the decoding of (mq,ms,...,mp2_p 1),
since (mp2_p_ry1,MB2_B_142,---,Mp2) are all dummy messages according to (26).

o a) Node n + 2 first finds the unique Ip, ., g2 = {lip2_1,7 € D12} such that there exists some

lg;%Bg_LJrl satisfying that for any block j = B>~ L+1,B* - L+2,...,B?,
(Xo,j(mjlm;—p), Xu(mj—p) {(Xi;(lij-1), Yij(lijllij-1)) i € Dujo}, Yoia;)
€ AE(X07 Xlu XDn+27 YDn+27 Yn+2>7 (30)

where, similarly, m; and m;_p are both dummy messages according to (26), and X ;(m;|m;_pg)
and X, ;j(m;_p) are both known at node n + 2. Still, from the proof of [20, Thm 2.7], lp, ., p>_1,
can be decoded if

I(Xs; YD, 08 Yool Xo, X1, Xp, . 0s) — I(Vs; Y| Xo, X1, X110, Yira, Yoo o\s) >0, (31)

for any nonempty S C D, 5.

« b) Backwardly and sequentially from block 7 = B*> — L to j = 1, node n + 2 finds the unique
pair (m;_p, lp,+2,-1) satisfying (30), where Ip,, ; has already been recovered due to the backward
property of decoding, and m; either is a dummy message (for j = B°—L,B*—L—1,...,B*—B—
L + 1) or has been decoded due to the backward property of decoding (for j = B> — B — L, B> —
B—-—L—-1,...,1).

At each block j = B*— L,B*—~ L —1,...,1, error occurs with m;_p if the true m;_p does not
satisfy (30) with any Ip, ., j—1, or a false m;_p satisfies (30) with some lp, ., ;1. According to the
properties of typical sequences, the true (m;_p,lp,,, j—1) satisfies (30) with high probability.

For a false m;_p and a lp,, ;-1 with false {l;;_1,i € S} blAlt true {l;;—1,4 € Dpya \ S},
X07j(mj|mj_3) and Xl,j(n}j—B) are independent of {(Xi7j(li,j—1)aYi,j(li,j‘li,j—l)) ZAT: € Dn+2} and
Yn+2,j; and {(X@j(l@jfl), Yi,j(li,jui,jfl)) 11 E S} are independent of {(Xi,j (li7j,1), Yi,j(li,j|li,jfl>) .
1€ Dn+2 \ S} and Yn_i_QJ.

Therefore, the probability that such false (m;,lp, ., ;1) satisfies (30) can be upper bounded by

9T (H(X0,X1,XD,, 5. YD, | 5 Yn+2)+€)9=T(H(Xp,  )\5:VD,,  5\5:Ynt2) =€)

% Q—T(H(Xo,Xl)—6)Q—T(H(Xs)—€)Q—T(Zies(H(fG‘Wi)—d) )

Since the number of such false (m;, lp, ., ;1) is upper bounded by 277 ], s 2TFVVilX0+9)  with
the union bound, it is easy to check that the probability of finding a false m; goes to zero as T" — oo,
if
R < min I(Xo, X1, Xs: Vo, 08, Yool Xp,a1s) = 1(Ysi Yol Xo, X1, Xp, o, Yoo, Vo). (32)
Then, similarly, based on the recovered m;, m;_p, and lp, ., ;, Ip,,, ;-1 can be decoded if (31) holds.
By a) and b) together, at the end of all B? block, the destination node n + 2 can decode messages
(mq, mg,...,mpge) if both (31) and (32) hold.
Combining 1) and ii), and using the standard technique of time sharing, we conclude that the rate
described in (22)-(24) is achievable.



B. Multiple D-F relay nodes (M > 2)

When there are multiple D-F relay nodes, i.e., M > 2, a total of BM*! blocks will be used. The
detailed codebook generation and encoding/decoding process are as follows.

Codebook Generation: Fix p(xo)p(xa|vo) [ Tiean pa P(%:)P(9ilyi, ;). We randomly and independently
generate a codebook for each block.

i) First consider the codebook generation for nodes 7(1 : M + 1).

o For each block b € [1 : BM*!], backwardly and sequentially for each relay node m(k),k = M +

1,M,...,2, randomly generate 2”7 conditionally independent sequences
Xﬂ—(k%b(mb_kal ’mb_Bk7 e ,mb_BM),
where Mp_pgk—1,Mp_Bk,...,Mp_pM € [1 . 2TR];
o For each block b € [1 : BM*1] and node 7(1), i.e., the source node 0, randomly generate 27%
conditionally independent sequences X ,(ms|Mp—5, - - . , My_pn ), Where
My, Mp—B, ..., Mp_pM € [1 : 2TR].

ii) The codebook generation for the nodes in A\ M is the same as that in the case of M = 1. For
each block b € [1 : BY*!] and each relay node i € A"\ M, randomly and independently generate 27"
sequences X;p(lip—1), lip—1 € [1: 2THi] where R; = I(Y; )A/;|XZ) + ¢; for each relay node i EAJ\/'\M and
each x;p(lip-1), lip—1 € [1: 2THi] randomly and conditionally independently generate 277 sequences
Vio(Livllip-1), lip € [1: 2T5].

The combination of i) and ii) defines the codebook for any block b € [1 : BM+1],

Cp = {Xﬂ(k%b(mb_kal’mb_Bk, Mg ) My ph—t, Mgk, My € [1:2TF) k=M +1,M, ...
Xo.4(Mp|Mp_p, - .., Myp_prr) t My, My, ..., My_pu € [1: 27H];
Xip(liv-1), Yio(lipllip—1) = Lip, lip—1 € [1: QTRi],i € N\M} (33)
Encoding: Let m = (mq,ms,...,mpm+1) be the message vector to be sent and let m;, = 1 be the
dummy message for any
be UBL wB — L+1:wB|| JUlL, U2 u(B - 1)B" +1: vB""], (34)

and for any b < 0. Now, the actually achievable rate is Z=%(Z=2)M R due to the dummy messages, which

can still be made arbitrarily close to R by choosing L < B, similarly as in the proof for the single D-F
relay node case in Subsection III-A.
i) We still first consider the encoding process for nodes 7(1: M + 1).

« In block b € [1 : B¥T!], node 7(1), i.e., the source node 0, transmits Xq,(mp|mp_p, - . ., My_pgr ).

« By the end of block vB* 1 v € [1 : ZZF — 1], the D-F relay node w(k),k = 2,..., M + 1, has
decoded messages (mq,ms, ..., m,pr—1) using backward decoding (see the decoding part). In the
next B¥~! blocks, i.e., in block b € [vB*"1+1: (v+1)B*1], node 7(k),k = 2,..., M +1, transmits
Xﬂ-(k%b(mbek—l ’mbek, e ,mb_BM), where

(M gr—1, Mp_pgk, ..., My_pur ), b € [vB* 1 +1: (v+1)B*!]

have all been decoded by block vB*~!.

ii) The encoding process for the nodes in N\ M is still the same as that in the case of M = 1. For
any block b € [1 : BM*1] each relay node i € N\ M, upon receiving y;; at the end of block b, finds
an index [;; such that

%ip(lin1), Vi Fin(linllin-1)) € Ad(X,, Y3, Y5),
where ;o = 1 by convention. In block b € [1 : BM*1], the relay node i € '\ M transmits x;,(l;5_1)-
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Decoding: At the end of block b = vB*' v € [1 : BM*1/B*"1] the node 7(k),k = 2,..., M + 2,
decodes messages (1my,_pgr-141,...,mMy) using block-by-block backward decoding as follows.

i) The node 7(k),k = 2,..., M + 2, first finds the unique Ip, p— = {l;p—1r,i € Dx} such that there
exists some %, , ;. satisfying that for any block j =b— L+1,0—L+2,...,b,

(X()’j(mj’mj‘_37 PN ,mj_BM),

{Xﬂ(8)7j(mj_Bsfl|mj_Bs’ e ,mj_BM), s=2,....k—1kk+1,....M+ 1},

{(Xij(lig1), Yig(ligllig1)) 1 € Did, Yap ) € Ac(Xo, Xots Xy Yoy, Yar). (35)
Note in (35), (m;j, m;—_p,...,mj_pm),j =b—L+1,b—L+2,...,bare all dummy messages according

to (34), and thus X () ;,s = 1,..., M + 1 are all known at node m(k). Then, it follows from the proof
of [20, Thm 2.7] that Ip, ;1 can be decoded if

I(X87 YD;C\S7 Yﬂ(k) |X7T(I:M+1)7 XDk\S) - I(YSa }A/S|X7r(1:M+1)7 XDIN Y7T(k2)7 }A/'Dk\S) > 07 (36)

for any nonempty S C D;.

ii) Backwardly and sequentially from block j = b—L to j = b—B* '+1,node 7(k), k = 2,3,..., M+2,
jointly decodes the message transmitted by its immediate upstream node 7(k—1), and the compressions of
the C-F relay nodes. Specifically, node 7 (k),k = 3,4, ..., M + 2 finds the unique pair (m;_gr—2,lp, j_1)
satisfying (35), and node 7(k), k = 2, finds the unique pair (m;, lp, ;—1) satisfying (35). Here the exception
for node 7(2) arises because the source node (1) transmits m; rather than m;_; in block j, but the ideas
of the decoding processes at all w(k),k = 2,3,..., M + 2, are exactly the same. Thus, below, we only
present the decoding at node w(k),k = 3,4,..., M + 2, while the decoding at node 7(2) can be easily
obtained by analogy. The same consideration also applies to the proof in IV-B.

In (35), Ip,,; has already been recovered due to the backward property of decoding, and among the

messages (m;,m;_pg,...,mj_pgm), only m;_gr—2 is the unknown message at node m(k) that needs to
be decoded in block j. In fact, (m;_gr-1,...,m;_pgum) have been decoded by block b — B*=1, while
(mj, ..., m;_pr-s) either are dummy messages according to (34) (for block j =b—L,b—L—1...,b—

B*=2 — L.+ 1) or have been decoded due to the backward property of decoding (for block j = b— B2 —
Lb—B¥2_L—1,...,b—B141).

Ateach block j =b—L,b—L—1,...,b— B* '+ 1, error occurs with m;_gi—2 if the true m;_pr-—2
does not satisfy (35) with any Ip, j_;, or a false m,_pgr— satisfies (35) with some Ip, ;1. According to
the properties of typical sequences, the true (m;_pi—2,lp, ;1) satisfies (35) with high probability.

For a false m;_pr—2 and a lp, ;_; with false {/;;_1,7 € S} but true {/;;_1,i € Dy, \ S},

{Xﬁ(l)yj(mj\mj,g, e ,mj,BM), XW(S)J‘(mJ’,Bs—l |mj,Bs, e ,mj,BM), S = 2, ce ]{Z — 1}
are conditionally independent of {(X; ;(l; j—1), Yi,j(li7j|li,j_1)) 4 € Dy} and Yo, given
{XW(S)’j(mj_Bs—l‘mj,B.S, c ,mj_BM), s=k,...,M+ 1};
and {(X;;(lij—1),Yi;(Lijlli;—1)) : i € S} are independent of
{(Xz’,jai,jfl);Yi,jai,j’li,jfl)) ) - Dk\S}, {X.T((S)Vj(mj,Bs—l |mj,Bs, . ,mj,BM), S € []{Z : M+1]}, Yﬂ'(k),j-
Therefore, the probability that such false (mj_ Bk-2, lpw-_l) satisfies (35) can be upper bounded by
21—‘(11()(7((1:1M+1)))(Dk.aY/D;C 7Y7r(k:))+6)2_T(H(X7r(k:1\l+1)7X'Dk\Svy'Dk\57Y7r(k))_e)
59~ TH X r (i —1) X (irr+1)) =€) 9= T(H(X5) =€) 9= T(Tes (H(Vi| Xi) =€)
Since the number of such false (m;_px-2, I, ;_1) is upper bounded by 277 [, ¢ 2T O¥ilX)+9) with the
union bound, it is easy to check that the probability of finding a false m,;_pr—> goes to zero as T' — oo,
if
R < min I(Xw(lzk—l)a XS; YD;AS? Yﬂ'(k) |XDk\87 Xﬂ'(k:M“rl)) _[(Y$7 )A/S|X7T(1:M+1)7 XDka Yw(k)a ?Dk\S)- (37)

SCD,



Then, based on the recovered (m;,m;_p,...,m;_pw) and lp, ;, from the proof of [20, Thm 2.7], it
follows that Ip, ;1 can be decoded if (36) holds.
Combining 1) and ii), using the technique of time sharing, we obtain the achievable rate (19)-(20).

I'V. UNIFIED RELAY FRAMEWORK WITH B-BLOCKS-BY-B-BLOCKS BACKWARD DECODING

Under the unified relay framework using nested blocks and backward decoding, we can also consider
combining the noisy network coding scheme [18] with the multi-level D-F scheme. However, since noisy
network coding uses repetitive encoding/all blocks united decoding, to make it fit into our framework,
a modification is needed. Specifically, assume some fixed M C N with |[M| = M and 7 ({0, M,n +
1}), and a total of BM*! blocks are used. The source can still repetitively encode intra- B-blocks as
in [18], but inter-B-blocks, the source has to cumulatively encode to allow for the operation of D-F
strategy; Correspondingly, both the D-F relay nodes and the destination will perform B-Blocks-By-B-
Blocks backward decoding, which is essentially a combination of backward decoding and B blocks united
decoding. Same as in Section III, the backward decoding at node 7(k),k = 2,3,..., M + 2, will happen
at the end of every B*~! blocks, i.e., at the end of block b = vB*~! v € [1 : BM*!/Bk~1] and both the
D-F relay nodes and the destination node perform compression-message joint decoding. Below, we still
first consider the case of single D-F relay node (M = 1) to illustrate the main idea, and then extend it to
the general case of multiple D-F relay nodes (M > 2).

A. Single D-F relay node (M = 1)

Still assume that only node 1 is the D-F relay node, and all other relay nodes are the C-F relay nodes,
and let N := N\ {1}. Specializing Theorem 2.2 to this case, we have that a rate R is achievable, if there
exists some

p(@)p(xolg)p(z1]xo, ) | | p(aila)p(@ilys, i, q),

ieN
such that
212‘/}\([ ml%_l ](X07 XS) Y'Tl\Sa Y1|X17 X’H\S? Q) - ](YS’ }A/S|X07 X17 X7'17 }/17 }}7—1\87 Q)?
R < min ' . .
max_ min I(X07 X17 XSa YTn.»,.2\37 n+2|X’Tn+2\Sa Q) - I(Y87 YS|XOa Xla X’Tn+27 Yn+27 YTn.»,.z\Sa Q)
7-IL+2CNSC7-'L+2
(38)

Still, a total of B? blocks will be used. The detailed codebook generation and encoding/decoding process
are as follows, which can be understood with the help of Table II.

Codebook Generation: Fix p(xo)p(z1|zo) [ ;e p(%i)p(9ilyi, ;). We randomly and independently gen-
erate a codebook for each block.

i) First consider the codebook generation for the source node 0 and the D-F relay node 1. Denote
f(b) :=[L], ie., the smallest integer greater than or equal to 5. For each block b € [1 : B?], randomly
generate 21% R independent sequences x; b(m Flb— B)) for node 1, and randomly generate 2TBE conditionally
independent sequences Xg (1 f)|mp—p)) for node 0, where myq), mpp—p) € [1: 2755

i1) The codebook generation for the C-F relay nodes is exactly the same as that in Section III. For
each block b € [1 : B?] and each relay node i € N, randomly and independently generate TR sequences
Xip(lip—1)s Lip—1 €[1: TR i], where R; = I(Y;;Y;|X;)+e; for each relay node i € N and each x; (1 p_1).
lig-n € 1 TR i], randomly and conditionally independently generate 9TRi gequences Vio(Livllip-1)s
li,b S [1 : 2TRi].

The combination of i) and ii) defines the codebook for any block b € [1 : B,

Cb = {Xl,b(mf(b—B))7XO,b(mf(b)|mf(b_B)) SMf(b), Mg (b—B) c [1 . QTBR];

Xip(liv-1), Yio(lipllin—1) = lip, lip—1 € [1: QTI%"]J' € /\7} (39)



TABLE II
B-BLOCKS-BY-B-BLOCKS BACKWARD DECODING FOR THE SINGLE D-F RELAY NODE CASE

Block 1 2 B-1 B
Xo x0,1(m1|1) x0,2(m1|1) x0,8—1(m1|1) x0,B(m1|1)
Y1 0 0 0 mi1
X1 x1,1(1) x1,2(1) x1,5-1(1) x1,5(1)
Y/\T 5’/\7,1”/(/,1‘1) 5’/\7,2([/\7,2|lz\7,1) yN,B—l(lj(f,B—luj\_f,BfQ) yj(f,B(lN,B‘l/\_/,B—l)
X x/\7,1(1) x/(/,z(l/\Y,1) xN,B-l(l/\'/,B—z) XN,B(IN,B—l)
Ynto 0 0 0 0
Block B2-B+1 B2 -B+2 B? -1 B2
Xo xg,p2_py1(llmp-1) xg,52_pt2(llmp-1) xg,p2_1(1lmp-1) xg,p2(1lmp-1)
Y1 0 0 0 mp
X1 x1,BQ—B+1(mel) Xl,B2—B+2(mB*1) xl,B2—1(mB*1) X1,B2 (mp-1)
Yy yN,BQ—B+1(l/\7,B2—B+1‘ZK/,BQ—B) yN,B2—B+2(lN,BQ—B+2|ZA7,BQ—B+1) 5’/\"/,3271(1N,B271“/\7,B272) 5’/\7,32(1/\7,32“/\7,3271)
Xy XN,327B+1(ZJ\7,BZ—B) x/\"/,32713+2(l/\7,3273+1) x./\7,3271(l,/\7,3272) XN, B2 (lz\"/,B271)
Ynt2 0 0 0 (m1,m2,...,mp)

Encoding: Let the message vector to be sent be

m = (an,ml,...,mlj,\mQ,m%...,mg,...,mB,mB,...,mB).

J/

-~ -~ -~

B B B

Let mp = 1 be the dummy message, 1.e., my) = 1 for any

be[(B-1)B+1:B?, (40)
and for any b < 0. The actually achievable rate is %R due to the dummy messages, which, however,

can be made arbitrarily close to R by letting B — oo.

1) First consider the encoding process for nodes 0 and 1.

« In block b € [1: B?], the source node 0 transmits Xo ¢(u) (1M )M f(—5))-

« At the end of block vB,v € [1 : B—1], the D-F relay node 1 has decoded message m, using B blocks
united decoding (see the decoding part). In the next B blocks, i.e., in block b € [vB+1 : (v+1)B], the
relay node 1 transmits x; ;(ms—p)), Where my_p) for any b € [vB+1 : (v+1)B] is corresponding
to m, that has been decoded by block v 5.

ii) For any block b € [1 : B, each relay node i € NV, upon receiving y;; at the end of block b, finds

an index [; ;, such that A
li,bfl)) € AE(X’i7 Y;a sz)a

(Xi,b(li,bfl)a Yip, S’i,b(li,b

where ;o = 1 by convention. In block b € [1 : B?], the relay node i € N transmits Xip(lip—1)-
Decoding: We present the decoding process at the D-F relay node 1 and at the destination node n + 2
separately.
i) At the end of block b = vB,v € [1 : B], the D-F relay node 1 decodes messages m, using B blocks
united decoding, i.e., it finds the unique m,, such that there exists some l})(f( satisfying that for

any block j = (v—1)B+1,(v—1)B+2,...,vB,

v—1)B+1

(Xo,j(mygmei-p))s X, (msi-p))
{(Xi(lij=1), Yij(lijllij—1)) 11 € N}, Y1) € Ad(Xo, X1, Xy, Yy, Y1), (41)




where m(;_p) is corresponding to m,_; and has been decoded by the end of block (v — 1)B, and m ;)
is corresponding to m,. From [18, Thm 1] and its proof (see also [20, Thm 2.4]), we have that m, can
be decoded if

R < érél/l;l[I(XOa XSa }/}/\7\37 Y1|XA7\87 Xl) - I(YS7 yS|X07 le XNa Yiv YN\S) (42)
Note, (42) can be improved by considering only a subset 7; C A for the decoding while treating the
inputs of other C-F relay nodes as purely noise, leading to following more general rate constraint:

R < max min I(Xo, Xs; Vs, Y1 X7i\s, X1) — 1(Ys; Y| Xo, X1, X7, Y3, Yris)- (43)
TICN SETh
ii) At the end of all B? block, the destination node decodes all messages (my,ma,...,mpg) using B-
Blocks-By- B-Blocks backward decoding. In fact, since mp = 1 is dummy message, only (mq,ms, ..., mpg_1)

need to be decoded. For this, backwardly and sequentially for g = B—1, B—2,...,1, node n+2 finds the

unique m,, such that there exists some lif ;BB+ , satisfying that for any block j = gB+1,9B+2,...,9B+B,

(Xo,j(msiymyi—p)), Xa,i(myi-p))
{(Xz‘,j(li,j—1>aYz‘,j(li,j”z‘,j—l)) NS N}7Yn+2,j) € A (X, X, XN7YN7Yn+2)~ (44)

Note in (44), for j = gB +1,9B +2,...,9B + B, only my(;_p), corresponding to mg, needs decoding;
and myj), corresponding to m,, either is a dummy message (for g = B—1,ie., j = (B—-1)B+1,(B—
1)B+2,...,B?), or has been decoded due to the backward property of decoding (for g = B—2,...,1).
Thus, X, and X, are cooperatively transmitting the message m,, and similarly as above, m, can be
decoded if

R < min [(Xo, X1, Xs: Yins: Yaral Xns) — I(¥s; Y| Xo, X1, Xy, Visa, Vi) (45)
Also, (45) can be improved by considering only a subset 7, for the decoding, leading to the following
rate constraint:

R< max_ min (X, X1, Xs; V708 Yoral X7 m\s) — 1(Ys; Yo | Xo, X1, X710, Yoro, Y7 o\s)-
Tnt2CN SETn+2
(46)

Combining (43) and (46) and using the technique of time sharing, we have that the rate in (38) is
achievable.

B. Multiple D-F relay nodes (M > 2)

Codebook Generation: Fix p(xo)p(xa|zo) [ Tiean pa P(%:)P(9ilyi, ;). We randomly and independently
generate a codebook for each block. The codebook generation for the C-F relay nodes is exactly the

same as that in III and IV-A, and hence omitted. We only present the codebook generation for nodes
b

m(1: M + 1). Still, denote f(b) := [£], i.e., the smallest integer greater than or equal to &.

o For each block b € [1 : BM*!] backwardly and sequentially for each relay node 7 (k),k = M +

1,M,...,2, randomly generate 27 5% conditionally independent sequences
Xw(k),b<mf(bek—1) ’mf(bek)a e amf(b—BM))a
where Mg (b—Bk=1); M f(b—Bk)s - -+ 5 TN f(b—BM) < [1 : 2TBR].

« For each block b € [1 : B¥*!] and node (1), i.e., the source node 0, randomly generate 2757
conditionally independent sequences

Xo0,6(M ) M b-B), - - - Mp—pMY),

where M b); Mf(b—B)s - - - s Mf(b—BM) € [1 : 2TBR].
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The above, together with the codebook generation for the C-F relay nodes, defines the codebook for any
block b € [1 : BMH],

Cb = {Xﬂ(k),b(mf(b,Bk—l)‘mf(b,Bk), c. ,mf(b_BM)) : mf(b,Bk_l), c ,mf(b_BM) € [1 . QTBR], k=M + 1, M, .

I

X0.5 (M f(0) [T (b—B)s - - s Mpp—BMY) T Mf(b), Mf(b—B)s - - s Mpp—pMy € [1
Xip(liv-1), Viollinllin—1) : lip, lip—1 € [L: 277],i € N\ M}
Encoding: Let the message vector to be sent be

m = (my, My, ..., M1, Mo, Mo, ..., Mo, ..., MM, MM, ..., Mp:M).
TV - WV 7 N TV -

B B B

Let my@) = 1 be the dummy message for any
be UM, UB T (B —1)B*+1:vB*H, (47)
and for any b < 0. The actually achievable rate is (%)M R due to the dummy messages, which can still
be made arbitrarily close to R by letting B — oo for any M.
The encoding process for the C-F relay nodes is still exactly the same as that in III and IV-A, and
hence omitted. We only present the encoding process for nodes 7(1: M + 1).

o In block b € [1 : BM*!], the source node O transmits Xo (1) [Mf4-B), - - - My (p—B1))-
o At the end of block vB* ', v € [1 : XL — 1], the relay node 7(k),k = 2,..., M + 1, has decoded
messages (1, My, ..., M,pre—2) using backward decoding (see the decoding part). In the next B*~*

blocks, i.e., in block b € [vB* 1 +1: (v+1)B*1], the relay node 7(k),k = 2,..., M + 1, transmits

Xw(k),b(mf(b—Bk—l) ’mf(bek)a e amf(b—BM))a
where (¢, pr-1y, Mpp_pry, - .. Mpp_py)) for any b € [wB* ' +1: (v + 1)B"'] have all been
decoded by block vB*!.

Decoding: At the end of every B*~! blocks, the node 7 (k),k = 2,..., M + 2 decodes B*~? mes-
sages using B-Blocks-By-B-Blocks backward decoding. (Note every B*~! blocks carry B*~2? messages.)
Specifically, at the end of block b = vB*! v € [1 : BM*1/B*"1] the node 7(k),k =2,..., M + 2, de-
codes messages (Mm(y_1)pk-241, - -, Mypr-2). In fact, (Mypgr-2_pgr-s,q,...,M,pr—2) are dummy messages
according to (47), and only (1m,_1ygt-—241,.-.,Mypr—2_pr-3) need decoding. For this, backwardly and
sequentially for g = vB* 2 — B*3 yB*2 - Bk=3 1 ... (v—1)B*¥?2+1, node 7(k) finds the unique
mg such that there exists some liﬁﬁi?;l) B4 ph—24, Satisfying that for any block j = (g —1)B + B2 4
1,(g—1)B+B*¥24+2,...,9gB+ B*2,

(Xoj(my|ms-pys - M-y,
{Xﬂ—(s)hj(mf(j_Bsfl)|mf(j_Bs), e ,mf(j_BM))7 s=2,....k—1,kk+1,....M+ 1},

{(Xi (L), Yy ligllij—1)) i € N\ MY, Yo ) € Ad(Xo, Xots Xanvt, Yanus Yay), (48)
where (my(j), Myi—By, - -, Mp(j—pE-3), M f(j—Br—2), M f(j_Bk-1), - - - , Mp(;_pMy) are corresponding to
(mg+Bk—3, MgyBk—3_15--3 Mgy Bk—3_pk—4, Mg, Mg Bk—3_Bk—2,. .., nger—s,BM—l) (49)

Among the messages in (49), only my, corresponding to my(;_pkr-2), is the unknown message at node
m(k) that needs to be decoded. In fact,

(Mgipr-s_ph-2,..., Mgy pr—s_pgu-1),corresponding to (mp(;_pr-1y,...,My_pm)),
have been decoded by block b — B*~!, while

(Mgt pr-3, Mgy ph-5_1,..., My pr-3_pgk-a),corresponding to (M), Mf(j—By), - -, Mfi—Br-3)),
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either are dummy messages according to (47) (for g = vB*=2 — B¥3 . vB*?2 - 2B%3 1 1) or have
been decoded due to the backward property of decoding (for g = vB*2 — 2B*3 yBk=2 — 2Bk=3
1,...,(v—1)B*2+1). Therefore, in (48),

{Xﬂ(s)’j,s:k,/{+1,...,]\/[+1}

are known at node 7(k), while
{Xw(s),j, S = 1, oo ,k — 1}

are cooperatively transmitting the message m,. Having noted this fact, from [18, Thm 1] and its proof
(see also [20, Thm 2.4]), we have that m, can be decoded if

R < Sgl\}{lM I(X k1), Xs3 Yorons, Yam | Xovwons, Xearin) — (Vs }A/S|X(1:M+1)7 Xams Ya(r)s ?(N\M)\s)-
) (50)

By considering only a subset 7, € A \ M for the decoding at node 7(k) while treating the inputs of
other C-F relay nodes as purely noise, and using the technique of time sharing, (50) can be improved to

in I(Xoas-1), Xs: Yros, Yoo | X718, Xk — I(Ys: Ys| X1 X7 Y, Y-
R<ngﬁ§M%% (Xae—1), Xs3 Y7085 Yoy | X708, Xn(eni1), @) — I (Vs Y| Xnivrgn) X7y Yy Y7ns, @),
(51)

which proves Theorem 2.2.

V. CONCLUSION

We have proposed a unified relay framework with both the D-F and C-F relay nodes for multiple-relay
channels. This framework employs nested blocks combined with backward decoding to allow for the full
incorporation of the best known D-F and C-F relay strategies. The achievable rates obtained under such
a framework turn out to combine both the best known D-F and C-F achievable rates and include them as
special cases.

APPENDIX A
RATES FOR THE AWGN TwWO-RELAY CHANNEL

With C(z) := %logQ(l + x), various rates are evaluated for the AWGN two-relay channel as follows.

A. Multi-level D-F
The best achievable D-F rates are the multi-level D-F rates [13]-[16]
R, = max{R,,, Ra,}
where
R,, = min{aiy, a2, a13}
R,, = min{asy, as, ass}
with
ann = I1(Xo; Y11 X1, Xs)
= C(gglp )
arz = I(Xo, X1; Y| X5)

= C((Q(Z)z + gfz)P)
aiz = I(X07X17X2;Y3)
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= C((g83 + 9%3 + 933)P)
21 = I(Xo;Y2|X1,X2)

= C(g§2P)
Q29 = I<X07 Xo; Y1|X1)

= C((981 + ggl)P)
Q23 = I<X07 X1, Xo; Y:%)

= C((g53 + 913 + 953)P).-

B. Noisy network coding
The best achievable C-F rates are the noisy network coding rates [18]-[20]
Ry, = min{by, by, b3, bs}
with
bl = [(XOa }A/b }A/Q? }/})’Xla X2)
2
9o P 902P
=C 2P
(1+ +1+A2+ 03 )
bQZI(X07X17}/27}/3|X2) (}/17)/1|X07X17X27}/27}/3)
+ gi) P (902013 — G12903)* P? 1
—C 2 2\p (95 12 _col=
((903 + 913) + 1+6 2 + 1+ 6% 6%
by = I(Xo, Xo; Y1, Ya| X1) — I(Ya; Ya| Xo, X1, X, Y1, Y3)
2 2 2 P2
+95)FP (901923 — 921903)° F 1
—-C 2 2\p (901 21 _col =
by = I(Xo, X1, Xo; Y3) — I(Y1, Ya; V1, Ya| Xo, X1, Xo, V3)
1+62 4062
= Oty + oty + )P - (FEE )

0103

where the optimal 67 and 632 are determined numerically.

C. Our unified schemes

The rates under our unified framework are
R, = max{R,, Ry, R.,, R, }
where
R., = min{max{c;1, min{ca, 13} }, max{cy4, min{cys, 16} } }
R., = min{max{cs;, min{css, co3}}, max{coy, min{css, cos } } }
with
e = 1(Xo; Y1|X71)

_ C’( 9311; )
1+ g5 P

Cla = ](XO§}A/2>}/1|X1)

2 P
902
=C (¢34 P
(901 +1+&§>




13 = I(Xo, Xo: V1| X)) — I(Ya; Ya| Xo, X1, X2, V1)

1
=C((95, +95)P) - C (a_g)
Clg = [(X07X1;YB)
_¢ (M)

1+ g3 P
Ci5 = [(X07X1;)/27}/3’X2)

2 2 2 P2
9o2 t+ 912) P 902913 — 12903)“ P
=C ((933 + 913) P + (902 + 912) ( ) >

1+ 63 - 1463
c16 = 1(Xo, X1, Xo; Y3) — I(Ya; Ya| Xo, X1, Xo, Y3)
1
— Ol + oy + 2P~ € (55)
2

Co1 = I(X0§Y2|X2)

L+ g1, P

Coo = [(Xo;f/lﬂfzsz)

2
901P
=C| P
(g02 +1+6%)
cos = 1(Xo, X1; Y| Xo) — (Y1 V1| Xo, X1, Xo, Ya)

1
~Cllg + 40P - (55
1
cos = I(Xo, X2;Y3)
_ o (0 +93)P
= B
L4 gi3P
cos = 1(Xo, Xp; Y1, Y3]X1)
2 2 2 p2
+951)P (91923 — g21903)° P
—C | (2 2\p (901 + 921
((903 + 933) P + 1162 1+ 67
ea6 = 1(Xo, X1, Xo; Y3) — I(V1; Y| Xo, X1, X5, Y3)
1
— Ol + s+ 3P € (53).
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D. Unified scheme in [16]
The rates in [16, Thm 4] (with U; = 0,7 = 1,2) are

with

where

Rd = maX{Rm Rd17 Rd27 RdS}

Rgy = dy st dig < djy,dis < djy, dig < dyy
Rd2 = Hlil’l{dgl, d22} S.t. d23 S d,23
Rd3 = min{dgl, d32} S.t. d33 S dg3

dyy = I(Xo; Y1, Ya, Y3 X1, X5)
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=b
diy = 1(Yy; 1| X1, Xo, Yo, Ya) + 1(Y3; Xo| X1)
—of 4+ 9o +C (i)
~ 2 ~
61 621+ 02 + g3 ) g’ +1+ 6%

dyy = 1(X1; V3| X5)

—C ( 9%3]; )
L+ gos P

dys = I(Ya; Ya| X1, Xo, Y1, Ya) 4 1(Ya; X1|X5)

~ 2 ~
03 521+ 05+ g3 ) 9o’ +1+ 63

dig = I(X; Y3|X4)

—C ( 9%3]; )
1+ gy P

dyy = I(Y1, Ya; Y1, Va| X1, X, Va) 4 I(Y1; Xo| X)) + I(Ya; X1|X5)
1+62+02 g (1+63)P+g5(1+6)P
=C ~2 9 + 5252(1 2 p
01035 0102( + g3 )

2 2
gn P gi2 P
+C\|\ 55 = t0 | =5 7=
<%£+1+ﬁ> (ﬁf+1+£)
d/14 = [(Xla X27 }/E%)
—C ((9%3 + 933)13)

1+ g P

do1 = I(Xo; Y1|X1)

= (1
doz = I(Xo, X1; Y2, V3| X3)

=C15
daz = 1(Y2; 3>2|X2, Y3)

e (i n (902913 — g12903)° P (932 + g%2) P )

o5 05((953 + 9is) P +1)  63((90 + 9fa) P +1)

dys = 1(Xy;Ys3)

_C ( g§3P >
14 (g8 + gis) P

d3 = ](Xo;Y2|X2)

= C21
d3y = [(Xo, X; Yh Y:”>|X1)
= C25
dss = I(Y1§ }}I‘Xla YB)
=C (i + (01903 — g21923)* P* gy + 93,)P )
6t 61((98s +93)P +1)  67((985 + 933) P + 1)

daz = I(X1;Y3)
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—C ( 9%3]3 )
1+ (983 + 933) P

E. Unified scheme in [24]

The rates in [24] are

where

with

F. Cut-set bound

R, = max{R.,, Ry, Re,, Re, }

R., = min{ejy, €12, €13}
R., = min{ey;, max{ess, min{ess, €24} }}

R., = min{es;, max{es2, min{ess, es4}}}

€11 = an
€12 = 421
€13 = a13
2
o= [mntenes) € () <€ ()
c11 otherwise
€22 = C14
€23 = C15
€24 = Ci6
2
o= [pitecat 1t ©(3) <0 (e
o otherwise
€32 = Co4
€33 = C25
€34 = C26-

Finally, the cut-set bound is given by

where

Rf = min{fb fa, f3, f4}

f1 = [(Xo;YhYQ,Y},\Xl,XQ)
= C((981 + 932 + 9(2)3)P)
f2 = ](Xo,Xl;YQ,YE’JXQ)

= C((go2g13 — 912903)°P* + (952 + Gio + 903 + Gi3) P)
fs = 1(Xo, Xo; Y1, V3| X1)

= C((go3g21 — 923901)° P* + (951 + 951 + 9o + 933) P)
fa = 1(Xo, X1, Xo; Y3)

= C((gg3 + 913 + 933) P).
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APPENDIX B
DERIVATION OF (28)

For notational convenience, denote {l; ;,7 € D;} by a |D;|-dimensional vector 1; for any j. Recall
that node 1 finds the unique 1,_; such that there exists some 17 41 satisfying (27) for any block j =
b—L+1,b—L+2,...,b where both X, ;(m;|m;_p) and X, j(m,_p) are known at node 1.

Assume the true 12, = 157! where 1:= (1,...,1) is a |D;|-dimensional all-ones vector. Then, error
occurs if 1,_;, = 1 does not satisfy (27) with any 12—L+1 forany j =b—L+1,b—L+2,...,b,0r a
false 1,_, # 1 satisfies (27) with some 1)_, ., forany j =b—L+1,b—L+2,...,b. Since Ij_, = 15
satisfies (27) forany j = b— L+ 1,b— L + 2,...,b with high probability according to the properties
of typical sequences, we only need to bound Pr(lJ, 216, ), where &, , is defined as the event that
1, satisfies (27) with some 1)_, ., for any j =b— L+ 1,b— L+ 2,...,b. For any (1;_1,1;), define
A;(1;_1,1;) as the event that (1;_1,1;) satisfies (27). Then, we have

b

pr( | & )=P(lJ U N A1)

,_r#1 B,y borA1b=b-Lt1

b

:Pr(U U U U N A4ty

=11 bhpe=1 B_ i lhopie#1, bor#Flj=b-L+1

Va € [1:L—1]
L-1 b b
<> e U N AW L) +Pr( U U N AG.LL).
a=1 127L+1;1b,L+a=1 Iy #1 j=b—L+1 157“1 ly_rpiq #1, bor#1j=b-L+1

Vae[l:L—1]

(52)

Let us first consider the second term in (52). For any 12, let S;(1}_;)={i € Dy : l;;_1 # 1}. Note
S;(1>_,) only depends on 1;_, so we also write it as S;(1;_;). Define X;(S;(1;_1)) as {X;;(li;j_1),i €
Sj(ljfl)}a and similarly define Y](S](ljfl)) a;l'ld Y](S](ljfl)) Then, (X]<SJ(IJ,1)),Y](S](ljfl))) are
independent of (XO,jJ Xl,j’ Xj (Dl \«Sj (lg_L)), Y] (Dl \8](12—[/))7 Yl,j)9 and Pr(AJ (lj,l, l])) can be upper
bounded by

T (H(Xo,X1,Xp, ¥p, Vi) +e)g L HX0oXXp 500 ) Ypis5ap,)¥1)70)
« 2—T(H(ij 1;_1))=¢) Q*T(Ziesj 1 1) (H(Y;|Xi)—e€))

—.9-T(Z(5;(1j-1))=¢)
where
Z(Si(1j-1)) = I(Xs;05-0): Yoosae_, ) Y1l X0, X1, Xpsa0_,))

- H(?Sj(1j71)|X07X17X'D17YD1\S]'(127L)7}/1) + Z H<}A/;‘XZ)
1€S;5(1;-1)

and ¢ — 0 as € — 0. Then, we have

Pr( U U N Al

oy ibonpe #1, l-r#lj=b-L+1
Va € [l:L—1]

< > > 11 e40-0L)

oy ibonpe #1, lor#lj=b-L+1
Va€[l:L—-1]
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b
< E | Y S O[] 2reEss-m-
127L+1 Iy r4a #1, l,_p7#1 j=b—L+1
Va € [l:L—1]
b
= E E E H 9=T(Z(S;(1j-1)) =€)
Sp—L415--,Sp LS =8, J=b-LAl
Sp—Lta #0,Va € [1: L] We[b—L-ﬁ-l b]
b A b
< E E H 2T(Zi65j (I(Yi;Yil Xi)+e€)) H 2,T(I(5j),€/)
Sb—L+15---5Sp ¢ J=b—L+1 Jj=b—L+1
Sy_r4a 20, Ya€[1: L]
b I ~ N
< E E H 2—T(I(X8j §YD1\S]- 7Y1|XO,X1,X91\5J.)—](Y5].;Ysj|X0,X1,XfDl,Yl,le\Sj)_€//)
Sb—L+17---7$b : j=b—L+1
S 2O va € - L)
Z Z 2_ngzb7L+l(I(X$j§Y/D1\Sj 7Y1‘X07X17XD1\SJ-)_I(YS]‘ ;Y/SJ‘|X07X17XD1 7Y11Y/D1\Sj)_5”)
I So—L+15---5Sp ¢
Sp_raa A0 Va e [L: L)
< E 2” —TL(minscp,.s20{1(Xs:YD,\5,Y1|X0,X1,Xp,\s)— 1 (Vs;Vs | X0, X1, XD ,Y1,Yp \5)—€¢"})

<2T(ZieN(I(Yiin|Xi)+e))2”L2_TL(minS§D1:S;éw{I(XS;Y/Dl\Sle 1 X0,X1,Xp,\8)—1(Vs:;Ys| X0,X1,Xp, ,Y1,Yp,\8)—€"})

where ¢ — 0 as € — 0. Thus, as both 7" and L go to infinity, the second term in (52) goes to 0, if (28)
holds.
Now consider the first term in (52). For any a € [1 : L — 1], we have

b b—L+a
PI'( U U ﬂ Aj (lj—17 lj)) < PI‘( U U ﬂ Aj (lj_l, 1]))
12_L+1:1b_L+a:1 lp—#1 j=b—L+1 lg fitll P | ly_1#1 j=b—L+1

Note Pr(Ul‘g:fﬁzlb,Ha:l Ui, 21 ﬂ? f+f+1 A;(1;_1,1;)) is the probability that there exists a false 1,_;, # 1
satisfying (27) with some lg:fﬁ for any block j € p— L+ 1:b— L+ a], where 1,_;,, = 1 is true.
Below, we show that this probability goes to O with the idea of backward decoding.
For any c € [1:al, a € [1: L — 1], denote
b—L+c

Po—L+e = Pr( U U m A; (121, L)).

12 £+i lb L+Cfllb L#lj b—L+1

Then, we have
b—L+c

pore=Pr( U N 401

P-lteq, o o=1l-r#lj=b-L+1

b—L+1°
b—L+c b—L+c

< Pr( U U N AGL) +Pr( U U N A4ty

LIt i bopge =1, lor#lj=b-L+1 BorTe it loopae =1, bor#lj=b-L+1

rpge—1=1 Lrye—1#1
b—L+c—1

< Pr( U U ﬂ Aj(i21,15)) + Pr( U Ap—rye(lb—r4c—1,lb—1+c))

- éifj Yy pye_1=1lb—rFA1 j=b—L+1 l—rte=11p—r4c—17#1
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. /
=!Pb—Ltc—1 T Dy—Les

where
Py—r4e = Pr( U Ap-rie(lo-r4e-1,1b-1+¢))

l—rre=11p—r4c—17#1
and especially

Po-L+1 = Py_p11 = Pr( U Ap-r1(lo—r, Lo—r41)).
ly_r41=11_#1

Recursively, for any a € [1: L — 1],

c=a
PoLta < Po-Lta1 Py pra <DPoLva2tDhrias T Phrra < 0 < ZP@—L%-
c=1

Foranyce [l1:al,a€[1:L—1], with Sp_pc(l_pyc—1) :={i € Dy : lip—r+c—1 # 1}, we have

/
Po—r+e = Pr( U Ap-rre(lore—1,l-14c))
Lorie=1lp_pye17#1
= Pr( U Ay rre(lb-rie1,lb-11c))
Lrqe=11p—r4c—1:Sp—rte(lb—rqe—1)#0

Z Z Pr(Ap—r+c(lo—r1e—1,bo—14c))

Sp— 470 Ly_rqc=1,
Lrqce—1:Sp—rtc(b—rge—1) = Sb—L+e

< Z 2T(Z¢€sb%+c(I(Yuﬁ-IXi)+E))27T(I(sb,L+C)fa)

Sy L4 c#D
< 2"2—T(min.sgD1:s;ﬁ@{I(Xs;Y”Dl\sﬁﬁ |X0,X1,Xp,\s)—1(Vs:;Ys|X0,X1,XD, ,Y1,Yp,\8)—€"})

IN

9

and thus p,_;., — 0 as T" — oo if (28) holds. Therefore, if (28) holds, the first term in (52) also goes
to 0 as T'— oo, and 1,_y, i.e., {l;p—1,7 € D1} can be decoded.
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